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Suppressing Anomalous Localized Waffle Behavior 
in Least Squares Wavefront Reconstructors 

Donald Gavel* 
Lawrence Livermore National Laboratory 

ABSTRACT 
A major difficulty with wavefront slope sensors is their insensitivity to certain phase aberration patterns, 
the classic example being the waffle pattern in the Fried sampling geometry. As the number of degrees of 
freedom in A0 systems grows larger, the possibility of troublesome waffle-like behavior over localized 
portions of the aperture is, becomin, 0 evident. Reconstructor matrices have associated with them, either 
explicitly or implicitly, an orthogonal mode space over which they operate, called the singular mode space. 
If not properly preconditioned, the reconstructor’s mode set can consist almost entirely of modes that each 
have some localized waffle-like behavior. In this paper we analyze the behavior of least-squares 
reconstructors with regard to their mode spaces. We introduce a new technique that is successful in 
producing a mode space that segregates the waffle-like behavior into a few “high order” modes, which can 
then be projected out of the reconstructor matrix. This technique can be adapted so as to remove any 
specific modes that are undesirable in the final recontructor (such as piston, tip, and tilt for example) as 
well as suppress (the more nebulously defined) localized waffle behavior. 

Keywords: Wavefront reconstructors, waffle mode 

1. INTRODUCTION 

The Hartmann-Shack sensor provides measurements of the subaperture-averaged wavefront slope at sample 
positions within an aperture. In principle, D Gven these measurements it is possible to recreate the original 
wavefront surface under the assumption that the wavefront is continuous across sample subaperture 
boundaries. Several authors have developed methods for wavefront reconstructing’.2’3. In this paper we are 
chiefly concerned with the least-squares approach, where the objective is to find the wavefront that 
minimizes a norm of differences between Hartmann sensor measurements and the measurements that 
would be obtained from the estimated wavefront. This approach is quite commonly used as the basis for 
closed loop compensation of atmospheric turbulence in adaptive optics systems’.5. The least-squares fit is a 
reasonable objective when the signal-to-noise ratio of the measurement is high, since there is high 
confidence placed in the measurements when the estimate is made to fit them as closely as possible. When 
the signal-to-noise is low, there are refinements to the least-squares approach, such as weighted-least- 
squares and regularized weighted-least-squares, which can take into account relative confidence in the 
measurements and/or wavefront prior information. 

A major difficulty with Hartmann sensors is the existence of blind or null modes, that is, wavefront 
functions that can yield zero or very small response in the Hartmann sensor output. The classic example is 
the waffle pattern in the Fried sample geometry3. Waffle mode is essentially a repeated astigmatic pattern 
at the period of the Hartmann sampling over the entire aperture. This wavefront has zero average slope 
over every supaperture and hence produces zero Hartmann sensor output. The null mode set represents 
anomalous wavefront functions that will satisfy the least-squares-fit criterion exactly, but may adversely 
affect the far-field imaging performance of an adaptive optics system. Imaging performance is typically 
characterized in terms of Strehl ratio, the far-field on-axis intensity relative to that of an unaberrated-beam.. 
The Marechal approximation6 states that the focal plane Strehl is monotonically related to the mean-square 
wavefront residual. Therefore minimizing the mean-square wavefront residual is a better objective than 
mean-square fit to measurements, but, because of the Hartmann sensor’s null space, the wavefront residual 
is not available directly. 

Given then only the Hartmann sensor information and no a-priori information about the wavefront, an 
acceptable approach is to presume that the null space components in the original wavefront are zero, and 
then set them to zero in the wavefront reconstruction. There is a practical difficulty however in defining 
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what exactly is the null space. The null property is a matter of degree; for example, on large A0 systems 
such as Keck’s where there are many hundreds of sample grid points, parasitic waffle-like behavior can 
occur over large sections of the aperture, but not necessarily over the entire aperture. These localized 
waffle shapes are in some sense close to, but not precisely in, the null space, so their magnitudes must 
become quite large before the Hartmann sensor can see them above the noise. But since these shapes are 
allowed as a solution, noise in the wavefront measurement may drive them to unacceptably large values. 

Once a mode space is defined, one can rank the modes by order of their “measurability” by the Hartmann 
sensor. Mode measurability is defined as the norm of the Hartmann sensor response vector to the unit norm 
wavefront mode. In effect, it is the distance from null space. Low-ranked modes could then be arbitrarily 
rejected from the reconstruction. NOW the problem is one of suitably defining such a mode space where 
relatively measurable modes separate neatly from nearly null modes. This is not always easy. For example 
the obvious and direct singular value decomposition”.’ unfortunately results a mode space where almost all 
of the modes have localized waffle-like behavior, so it is not necessarily a good space to use to sort out 
waffle. 

In this paper we describe and analyze the behavior of least-squares reconstructors, particularly with respect 
to their affect on low-measurability modes. We then introduce a new technique that is successful in 
reducing anomalous low-measurability behavior such as localized waffle in the wavefront solution. This 
technique can be adapted so as to remove any specific modes that are undesirable (such as piston, tip, and 
tilt for example) as well as suppress (the more nebulously defined) partial waffle behavior. 

2. THE LEAST-SQUARE WAVEFRONT RECONSTRUCTOR 

The Hartmann-Shack wavefront sensor can be modeled as the matrix-vector operation 

s=Ha (1) 

where s is an n,-vector of Hartmann sensor readings, and a is an n, vector of wavefront samples (or, 
without loss of generality, a is vector of deformable mirror actuator commands in an adaptive optics system 
-- from here on we will refer to a as the “actuator vector” and the elements of a as the “actuator 
commands”). H is an n, x n, actuator influence matrix. The columns of H are the Hartmann sensor 
responses to unit actuator commands. 

The H matrix for a particular system will depend on the functional form of the actuator influence function 
and on the aperture boundary. Typically, the number of Hartmann sensor measurements (counting two per 
subaperture, one for each of the x and y components of slope) exceeds the number of actuators, that is, n, > 
n,, so the inverse problem implied by (I), find a given s, is overdetermined. Let 2 represent the estimated 
actuator values. We wish to minimize the sum of squares of the measurement residuals: 

ST5=(s-HP)T(s-HB) (2) 

Taking the partial derivative with respect to land settin, 0 equal to zero, we come up with the following 
normal equations: 

HTH4 = HTs (3) 

which can be solved explicitly for d provided the matrix HTH is non singular. The matrix (HTH)-‘HT=H* 
is known as the Moore-Penrose pseudo-inverses of H and has the obvious property that H”H=I. 

Here we must point out an important fact that is particularly relevant to Hartmann sensors: the matrix HTH 
is singular if any null modes exist. The rank deficiency of HTH is equal to the dimension of the null space 
of H. The Fried geometry, for example, has two null modes: piston and waffle, so the rank deficiency of H 
is 2, and thus solutions to (3) are not explicitly defined via the pseudo-inverse. 

3. THE SINGULAR VALUE DECOMPOSITION 

The existence of a null space of H implies there are combinations of actuator command vectors (those in 
the null space) that will have no effect on the residual square error given by equation (2). It also implies 
that there are no linear combinations of the columns of H that sum to zero. One can imagine building a new 



matrix using n,-no Linear combinations of columns of H to produce a “thinner” n, X (n,-no) matrix H’ which 
is full rank and maps the of actuator vectors not in the null space to the Hartmann measurement space. The 
pseudo inverse of H’ (=H’*) maps sensor vectors to the non-null space of actuators. This method is 
equivalent to finding, among all the actuator vectors that exactly satisfy the minimization criterion (2), the 
one of minimum norm, and the one having no projection into the null space. 

The mechanics of forming the pseudo-inverse as described above may be accomplished using a numerical 
method known as the singular value decomposition’. The matrix H can always be written as the product 

H = 13ZAT (4) 

where A is an n, x n, matrix with orthonormal columns (and rows), that is, AT = A-‘, B is an n, x n, matrix 
with orthonormal columns (BTB = I), and X=diag(oJ is a diagonal matrix with nonnegative diagonal 
elements. The columns of A define the modes in the actuator space and the columns of B describe the 
normalized sensor response vectors to each of the modes. The quantity oi is the strength of the sensor 
response to actuator mode i, essentially the mode measurability. Those modes that correspond to (si = 0 are 
in the null space. The singular value decomposition is unique in that the response vectors to orthonormal 
actuator-space vectors are themselves orthogonal in the sensor space. The singular value decomposition (4) 
can be obtained numerically using (for example) the SVDC routine in IDL. 

We can write the matrices A = [a, / a2 1 . . . 1 ann] and B = [b, j b> 1 1 b,,]. Substituting (4) into (1) we can 
write the sensor vector as a sum of modal contributions: 

S=Cbioi(?i *a) 
(3 

This can be interpreted as follows: find the i’th mode coefficient of the actuator vector a by taking the inner 
product with mode vector ai, multiply it by oi, then make this the i’th mode coefficient for the sensor vector 
using mode b, in sensor space. The index i in the sum might as well cover only those modes not in the null 
space, since null space modes have cri = 0. So if we take A’ = columns of A not in the null space, B’ = 

corresponding columns of B consisting of bi where ai is not in the null space, and Z’ = diag(oi f 0) then 

H=B’C’AfT (6) 

and BlTB’ = I and AIT A’ = I, so HTH = A’Z’2A’T. It is easy to verify by direct substitution that 

1 = A’C+JTTs (7) 

satisfies the normal equations (3). Furthermore, the solution is the one of minimum norm since 3. ai = 0 

for all ai in the null space, which is verifiable using (7) and the fact that the columns of A’ consist only of 
vectors not in the null space. The solution can be written as a sum of modal contributions: 

ii= za,o;*(bi OS) 

i: 0, #O 

(8) 

which can be interpreted as follows: determine the i’th mode coefficient for the sensor vector by taking the 
inner product with bi, multiply by the inverse of the mode’s measurability, oi, and then use this as the 
coefficient for the i’th actuator mode in the solution. The sum is taken only over the modes not in the null 

space (oi f 0). 

Equation (8) shows the inherent difficulty in using the singular value decomposition to implement the 
wavefront reconstructor. The modes with the least (but nonzero) measurability get amplified the most in 
the reconstruction, making them prone to noise in s or error in the determination of bi (induced by errors in 
determining H). Furthermore, “throwing out” modes with low measurability (say by setting a threshold on 
oJ does not guarantee that the remaining modes do not have anomalous behavior, such as waffle over 
portions of the aperture (Figures l-3). 



4. WEIGHTED LEAST SQUARES 

A variation along the least-squares theme is the weighted-least-squares criterion 

STWS = (s - HP)T W(s - Hd) (9) 

where W is a positive-definite matrix. W = diag(w,) for example could be used to indicate relative 
confidence in the individual sensor readings. The normal equation is 

HTWHii=HTWs (10) 

Substituting (6) into (IO), and solving for d we get 

noting that the indicated matrix inverse exists since B’ is full rank and W is positive definite. We can make 
the following observations. The mode space is defined by the same ai (columns of A) as in the non 
weighted least squares case, so the mode space is unaffected by the weighting. W”‘H has the same null 
space as H, therefore weighting the residuals introduces no penalty for anomalous behavior, that is, 
arbitrary vectors in null space can be added to 2 and still satisfy (10). (11) is the minimum norm solution 
(no components in the null space) however, aside from the fact that the measurements are post multiplied 
by a fancier conditioning matrix (B’TWB’)“B’TW to determine mode coefficients, the low measurability 
modes are still experience the highest amplification via c“‘. We could imagine that some adjustment of W 
might cause this conditioning matrix to suppress low measurability modes, but this is not the case as is 
shown below. 

If the measurement vector s consists only of components that are mapped by H from the non-null space 
(that is, s is noise free and H is exact, as in equation (l)), then s is a linear combination of the columns of 
H. From (6) it is clear that s is a linear combination of the columns of B’ as well, that is 

s=B’c 

where c is an n,,-no vector of modal coefficients: ci = bi l s. Substituting (12) into (11) yields 

(12) 

6 = A’C’-lc (13) 

which is independent of the weighting. So weighting of the measurement vector does not at all affect the 
solution’s modal behavior, and in particular, low measurability modes (such as partial waffle) will still be 
highly amplified in exactly the same way as (non-weighted) least squares. We should note in all fairness to 
the efficacy of weighted-least-squares however, that the noise amplification will be quite different 
depending on W. With measurement noise, the statistical least mean-square error estimate of a will be 
obtained by setting W = V’ where V is the covariance of the measurement noise. 

5. REGULARIZATION 

Another approach is to force the explicit solution of (3) by replacing HTH by HTH + a21 where a is a 
positive constant called the regularization parameter. The matrix HTH + a21 is full rank and therefore 
invertible, so we create the regularized pseudo-inverse 

H; = 

An advantage of this approach is that it does not require a singular value decomposition to find and remove 

the null space. A disadvantage is that H,‘H # I. It is interesting to note that P = Hzs is the explicit 

minimization of the modified least-squares criterion 

J = (s - Hii)T(s - Ha) + a2iiTi (12) 



which can be verified by taking the derivative of J with respect to 2 and setting equal to zero. The 
modified criteron places a penalty on the use of actuator “energy” that offsets the penalty due to 
measurement fitting error. 

The normal equation is 

Since 

(H’H + 21b = ~3 (13) 

we see that the regularization is simply equivalent to replacing the singular values by weighted versions of 
them, creating a “soft lower limit” on each singular value: 

but that the singular mode space vectors are unchanged. The only effect of regularization therefore is to 
suppress amplification of low-singular value modes in the reconstructor by asymptotically limiting qe2 to a 
maximum value of ci2. This is a reasonable alternative to throwing out the low singular value modes 
completely as was suggested for the non-regularized case, although it is basically the same idea. It still 
does not solve the problem of localized waffle being present in every mode since the mode space remains 
unchanged. 

6. ACTUATOR PENALTY 

We now present a weighting approach that will actually change the mode space structure. We introduce an 
actuator weighting, but instead of using a scalar regularization parameter we use a positive-definite matrix, 
v. 

J=(~-Hii)~(s-Hii)+B~Vl (16) 

For example, if V were the outer product of actuator waffle mode, then the added term will penalize the 
waffle mode, But, actually, we want to penalize all local waffle behavior as well. To do this, we introduce 
the weighting matrix 

V =FTF (I71 

where F is described as: 

1 -1 
F= 

c I 
0 

-1 1 
(18) 

that is, F is a matrix form that implements convolution with a 2x2 localized waffle. Note that instead of V 
being a rank-l matrix that penalizes only one mode, V is a rank N matrix that penalizes all localized waffle 
behavior. We can add rank-l matrices to V as well, for example to penalize pure piston mode. The 
reconstruction matrix is now 

K = (WH + FTF)-‘HT (19) 

The singular value decomposition of K can be written: 

K = A&B; (20) 

Since K is the reconstructor, it is the larger values of oK that correspond to the modes that are most 
amplified. Examining the mode space of this new reconstructor (Figures 4-6), we see that this technique 
acts to sort the modes in the way we want. Those modes with large singular values (greatest amplification) 



have the appearance of low-order Zernike behavior, with no waffle. The modes with the small singular 
values have localized waffle, and there is a general correspondence between the magnitude of the singular 
value and apparent amount of localized waffle in the mode. 

7. STATISTICAL WEIGHTING 

We might mention at this point that a-priori statistical information concerning the quantities to be 
determined (the phases) and the measurement noise can be used to set the weighting matrices in the cost 
function terms. The general form is 

J = (~-Hii)~ W(s-Hi)+iTVi (21) 

If we set V equal to the inverse of the a-priori covariance matrix for phase points and W equal to the 
inverse of the measurement noise covariance matrix, and the statistics are Gaussian, then (we state here 
without proof) minimizing J is equivalent to finding the statistically most likely (conditional mean) value of 
actuator vector a given the measurement vector s. For example, the initial uncertainty of atmospheric 
phase is given by Kolmogorov statistics. The k-l’” spatial power spectrum encoded in V will act to 
increase the penalty for high spatial frequency behavior in the solution, since the atmosphere is unlikely to 
contain high spatial frequency components relative to low spatial frequency ones. This acts fortuitously to 
suppress waffle behavior, which is a high spatial frequency behavior. 

8. CONCLUSION 

We have presented analyses of various weighting schemes for least squares wavefront reconstructors where 
the actuators and Hartmann subapertures are arranged on a rectilinear grid. A number of the more 
commonly used methods are susceptible to anomalous behavior, particularly the amplification of localized 
waffle. Furthermore, the singular value decomposition of the reconstructor matrix typically produces a 
mode set where almost all of the modes appear to contain some amount of localized waffle, frustrating 
attempts to filter out waffle modes by selection. We found that only a modification of the cost function by 
including a penalty term on the actuators will actually modify the mode space. With a suitable weighting 
matrix on the actuators, waffle behavior can be sorted out into modes that have the least influence in the 
reconstrutor matrix, thus suppressin, 0 waffle in the wavefront solutions. 
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Figure 3. Zoomed in view of other modes 15-18 (top row) and 33-36 (bottom row) in the SVD mode set. Every mode 
shows waffle behavior. 

Figure 4. The mode set resulting from the actuator-penalty method (20), ranked in reverse order of magnitude of the 
singular value of the reconstruction matrix K (largest is upper left). Waffle behavior is relegated to modes with the 
lowest singular values. Modes with high singular values look like low-order Zemikes, with no waffle. Piston is the 
lowest non-zero singular value mode (by design - we added piston-mode actuator penalty). The “zero-visiblity” (zero 
singular value) modes are associated with actuators outside the aperture and so are last in this set. 



Figure 5. Zoomed in view of modes 1-4 (top row) and 19-22 (bottom row) from the actuator-penalty method. 

Figure 6. Zoomed in view of modes 15-18 (top row) and 33-36 (bottom row) from the actuator-penalty method. 
Although high-order modes have high spatial frequencies, they have no localized waffle behavior. 

a b 

Figure 7. Long-exposure point-spread-functions from a closed loop simulation using a) a standard SVD pseudo- 
inverse matrix, with modes rejected if the singular value falls below 0.15 times the maximum singular value, and b) a 
reconstruction matrix generated using the actuator-penalty method with no modes rejected. The deformable mirror 
consists of a circular aperture with 276 actuators arranged on a rectilinear grid (within the circle inscribing a square 
18x18 grid). The input wavefront presented to the controller was flat (zero phase over the aperture for the duration of 
the simulation) while the Hartmann slope measurement error was 1 radian per subaperture-width rms white noise, 
spatially and temporally uncorrelated. The characteristic waffle-dot far-field pattern is quite evident in image a, while 
there is no hint of it in image b. Waffle bumps are about l/IO the amplitude of the peak in image a. (Images are shown 
in log-stretched greyscale.) The Strehl in image b is 0.66 compared to 0.42 in image a. 




